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Importance of Linear Algebra in ML

THIS 15 YOUR MACHINE LEARNING SYSTETM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN (OLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LURONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT.

But what is RIGHT? And is that enough? (Image: Machine Learning, XKCD)
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Topics in Linear Algebra for ML

 Why do we need Linear Algebra?

* From scalars to tensors

* Flow of tensors in ML

« Matrix operations: determinant, inverse
* Eigen values and eigen vectors

» Singular Value Decomposition

* Principal components analysis
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Machine Learning HOOLS

What is linear algebra?

 Linear algebra is the branch of mathematics
concerning linear equations such as

ax,t....+rax,=b
— In vector notation we say a'x=b
— Called a linear transformation of x

 Linear algebra is fundamental to geometry, for
defining objects such as lines, planes, rotations

Linear equation a;x;+.....+a,x,=b
defines a plane in (x,..,x,,) space
Straight lines define common solutions
to equations
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Why do we need to know it

 Linear Algebra is used throughout engineering

— Because it is based on continuous math rather than
discrete math
« Computer scientists have little experience with it

» Essential for understanding ML algorithms

— E.g., We convert input vectors (x,,..,x,) into outputs
by a series of linear transformations

* Here we discuss:
— Concepts of linear algebra needed for ML
— Omit other aspects of linear algebra
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Linear Algebra Topics

— Scalars, Vectors, Matrices and Tensors
— Multiplying Matrices and Vectors

— ldentity and Inverse Matrices

— Linear Dependence and Span

— Norms

— Special kinds of matrices and vectors
— Eigendecomposition

— Singular value decomposition

— The Moore Penrose pseudoinverse
— The trace operator

— The determinant

— EX: principal components analysis
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« Single number

— |In contrast to ot
which are usual

* Represented in

Scalar

ner objects in linear algebra,
y arrays of numbers

ower-case Italic x

— They can be real-valued or be integers
* E.g., let xR be the slope of the line
— Defining a real-valued scalar

* E.g., letneN be the number of units
— Defining a natural number scalar
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Vector

* An array of numbers arranged in order
« Each no. identified by an index

* Written in lower-case bold such as x
— its elements are In italics lower case, subscripted

Ly

w:

T

e |f each elementisin R thenxisin R”

* \We can think of vectors as points in space
— Each element gives coordinate along an axis
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Matrices

« 2-D array of numbers
— S0 each element identified by two indices

* Denoted by bold typeface 4

— Elements indicated by name in italic but not bold
* A, ,is the top left entry and 4,, ,is the bottom right entry

* We can identify nos in vertical column j by writing : for the
horizontal coordinate

’ Eg’ |: A11 A12 ]
A= , ,

A A

* 4, is " row of 4, 4 is j column of 4
* If 4 has shape of height m and width » with real-
values then AeR™

9
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Tensor

« Sometimes need an array with more than two
axes

— E.g., an RGB color image has three axes

« Atensor is an array of numbers arranged on a
regular grid with variable number of axes

— See figure next
* Denote a tensor with this bold typeface: A
* Element (i,j,k) of tensor denoted by A,

10
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Dimensions of Tensors

Fibers of a 3" order tensor

]

filis
Y
afa/afnial
0d-tensor 1d-tensor 2d-tensor 3d-tensor A(afalalalala
(scalar) (a) Mode-1 (column) fibers: x.j;  (b) Mode-2 (row) fibers: x;.,  (c) Mode-3 (tube) fibers: x;;.

Slices of a 3" order tensor

L [
4d-tensor 5d-tensor 6d-tensor %

(a) Horizontal slices: X;.. (b) Lateral slices: X.;: (c) Frontal slices: X, (or Xg)

—
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. . tensor
One dimensional Tensor 2 13 13517 l1alo |2 |15

Two dimensional tensor

Three dimensional tensor
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Numpy library in Python for tensors

— Zero-dimensional tensor

e import numpy as np
X = np.array(100)
print(“Array:”, x)
print(“Dimension:”, x.ndim)
e Output
Array: 100
Dimension 0

— One-dimensional tensor

* import numpy as np
x = np.array([1,5,2,7,11,24,25,12])
print(“Array:”, x)
print(“Dimension:”, x.ndim)

e Output
Array:[152711242512]
Dimension 1

— Two-dimensional tensor

e import numpy as np
X = np.array(
[
[1,5,2,7,11,24,25,12],
[1,2,3,4,5,6,7,8]
]
)
e print(“Array:”, x)
print(“Dimension:”, x.ndim)
e Output
Array:[[152711242512][1234
5678]]

Dimension 2

12
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Transpose of a Matrix

* An important operation on matrices
* The transpose of a matrix 4 is denoted as AT
» Defined as
(A1),=4;,;
— The mirror image across a diagonal line

 Called the main diagonal , running down to the right
starting from upper left corner

13
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Vectors as special case of matrix

* Vectors are matrices with a single column
» Often written in-line using transpose

x=[x,.,x,]"

A scalar is a matrix with one element
— T
a—d

14
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Matrix Addition

* We can add matrices to each other if they have
the same shape, by adding corresponding
elements
— If A and B have same shape (height m, width »)

C:A+B:>Ci’j:Am+Bi’j

* A scalar can be added to a matrix or multiplied
by d Scalar D:aB+c:>Di7j:aBi7j+c
 |Less conventional notation used in ML:

— Vector added to matrix c=a+b=c, =4 +b
 Called broadcasting since vector b added to each row of 4

15



Multiplying Matrices

* For product c=4Bto be defined, 4 has to have
the same no. of columns as the no. of rows of B

— If 4 Is of shape mxn and B is of shape nxp then
matrix product C is of shape mxp

C=AB=C, = ;Ai,kBkJ

— Note that the standard product of two matrices is
not just the product of two individual elements

» Such a product does exist and is called the element-wise
product or the Hadamard product A®B

16



Multiplying Vectors

* Dot product between two vectors x and y of
same dimensionality is the matrix product x'y

* \We can think of matrix product C=4B as
computing C; the dot product of row i of 4 and
column j of B

17



Matrix Product Properties

Distributivity over addition: A(B+C)=AB+AC
Associativity: A(BC)=(AB)C
Not commutative: AB=BA is not always true

Dot product between vectors is commutative:

xy=ylx
Transpose of a matrix product has a simple
form: (AB)'=BTAT

Srihari
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Srihari
A linear classifier y= WxT+b
stretch pixels into single column
- }
Vector x is converted 020501 T20] 6| [ ~- - .
into vector y by
. . . 15 [ 1.3 | 21 | 0.0 231 | 4+ [ - R oo
multiplying x by a matrix W
etz 0 [025|02|-03 24 1.2 Sl
w 2 b f(zs; W,b)
Z;

A linear classifier with bias eliminated y= WxT

02 |-05| 01|20 56 0N 02 |-05[01 |20 11 56

15|13 (21|00 | (2314 [32| «— [[ 1513|2100 |32 231

0 025| 0.2 | -0.3 24 -1.2 0 025| 0.2 | -0.3 || -1.2 24
w 2 b w b 2
z; new, single W

Z;
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Linear Transformation

e Ax=b

—where 4eR™ and beR”
— More explicitly

AHxI +A12x2 +....+ Ajnxn =b1

AZIXI +A22x2 ++A2nxn :bZ

Anlxl +Am2x2 +....+ An'nxn =bn

A, - A
A=| : :
A, - A

1n
x =
nn

X

X

1 1
: b=|

b

nxn

nxl

nx1

n equations in
n unknowns

b Can view A4 as a linear transformation
of vector x to vector b

« Sometimes we wish to solve for the unknowns
x ={x,..,x,} when 4 and b provide constraints

20
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ldentity and Inverse Matrices

Matrix inversion is a powerful tool to analytically
solve Ax=b

Needs concept of Identity matrix

ldentity matrix does not change value of vector
when we multiply the vector by identity matrix

— Denote identity matrix that preserves n-dimensional
vectors as I,

— Forma”y ]n e [R™" and VXERH,IHX=X
— Example of I, { !
0

o = O
_ o O

21




Matrix Inverse

Inverse of square matrix 4 defined as 474=1

We can now solve Ax=b as follows:
Ax=Db
A'Ax=A"b
Inx=A_1b
x=A"b

This depends on being able to find 4

If A-! exists there are several methods for
finding it

Srihari
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Solving Simultaneous equations

e Ax =D
where A i1s (M+1) x (M+1)
x Is (M+1) x 1: set of weights to be determined
bisNx1

Srihari
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weemgxample: System of Linear ™™
Equations in Linear Regression

* Instead of Ax=b

e \We have [ow=t

—where @ is m x n design matrix of m features for n
samples x;, j=1,..n

— w IS weight vector of m values
— t Is target values of sample, t=[t,,..t,]

— We need weight w to be used with m features to
determine output

y(m,w)=2wixi
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Closed-form solutions

 Two closed-form solutions
1.Matrix inversion x=A"lb
2.Gaussian elimination

Srihari
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Srihari

Linear Equations: Closed-Form Solutions

1. Matrix Formulation: Ax=b
Solution: x=A1bp

111 + Qe +- -+ A, = b

21T + Q%9 + -+ AopTp = b2

A1 L1 + Qa2 + -+ App Ty = b-m

a1 aq2 1n Xy b1

a1 a2 2 ) by

fl —_ \ X = \ b = )

2. Gaussian Elimination | @m1 Am2 @mn | | Tn | -bm-

followed by back-substitution
T+3y—2:=5 L,-3L,>L, L3-2L, L5 -L,/4>L,

3r+5y+6z2=T| [r 5 o7y 1 3 —2| 5 1 3 -2 5 1 3 —2| 5
20 + 4y + 32 =8 35 6(7|~]0 -4 12/-8|~]0 -4 12/8|[~|0 1 -3| 2
2 4 3|8 2 4 3| 8 0 -2 7|-=2 0 —2 —2

1 3 —2|5 1 3 =25 13 0]9 10 0|=15

~l01 =3|2]~]l01 ol8|~|010/8|~]010] 8

00 1|2 00 1|2 00 1(2 00 1| 2
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Disadvantage of closed-form solutions

* |f Alexists, the same Alcan be used for any
given b

— But A-1cannot be represented with sufficient
precision

— It is not used in practice
« Gaussian elimination also has disadvantages

— numerical instability (division by small no.)
— O(n3) for n X n matrix

« Software solutions use value of b in finding x

— E.g., difference (derivative) between b and output is
used iteratively 27



Machine Learning Srihari

How many solutions for Ax=b exist?

« System of equations with j:jjif{ :if« Z
— n variables and m equations is:

e Solution is x=A1b

* In order for A1to exist Ax=b must have exactly
one solution for every value of b

— It is also possible for the system of equations to
have no solutions or an infinite no. of solutions for
some values of b

* [t is not possible to have more than one but fewer than
infinitely many solutions

— If xand y are solutions then z=ax + (/-a) y is a
solution for any real « 28

A x+A4 x +..t4 x =b
mil 1 m2 2 mn n m
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Span of a set of vectors

* Span of a set of vectors: set of points obtained
by a linear combination of those vectors

— A linear combination of vectors {vl,.., vi?} with
coefficients c;is |Yco"
— System of equations is Ax=b
« A column of A, i.e., A, specifies travel in direction i
 How much we need to travel is given by x;
 This is a linear combination of vectors Az=YzA
— Thus determining whether Ax=b has a solution is
equivalent to determining whether b is in the span
of columns of A
* This span is referred to as column space or range of A
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Conditions for a solution to Ax=b

« Matrix must be square, i.e., m=n and all
columns must be linearly independent

— Necessary condition is n=m
 For a solution to exist when Ae R™" we require the
column space be all of R”
— Sufficient Condition

* If columns are linear combinations of other columns,
column space is less than R”
— Columns are linearly dependent or matrix is singular

* For column space to encompass R™ at least one set
of m linearly independent columns

* For non-square and singular matrices
— Methods other than matrix inversion are used
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Use of a Vector in Regression

* A design matrix
— N samples, D features

# hours # hours # classes Grade
studied playing games __missed
Student #1 10 3 0 * 87
Student #2 8 20 2 75
5 63

Student #3 | A 1

 Feature vector has three dimensions

* This Is a regression problem

31
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Norms

« Used for measuring the size of a vector
 Norms map vectors to non-negative values

Srihari

* Norm of vector x = [x,,..,x,]T is distance from origin

to x

— It is any function 1 that satisfies:

f(:v):O:>:1::O

f(z+y) < f(z)+f(y)
VoaeR f(oca:):‘(x‘f(w)

Triangle Inequality

32
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L” Norm
o Definition: i
el (S |
— L2 Norm e,
» Called Euclidean norm -

— Simply the Euclidean distance
between the origin and the point x e ;212
— written simply as | | x| | B .
— Squared Euclidean norm is same as x'x o —ficod
y
— [T Norm |

» Useful when 0 and non-zero have to be distinguished
— Note that L2 increases slowly near origin, e.g., 0.12=0.01)

— L~ Norm H"’“’Hoo:m

am‘ xz‘

[/

e Called max norm 33
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Use of norm in Regression

* Linear Regression
x. a vector, w: weight vector

y(x,w) = wotw x;+..+w, x,; = wx

With nonlinear basis functions ¢, | .
M-1 t o o
y(zw)=w, + Y w ¢ () ’ /\/

j=1 s

 Loss Function

- 1 - 2 A‘ 2
B(w) =< X {yl@,w) -t} + 5w’
n=1

Second term is a weighted norm
called a regularizer (to prevent overfitting) 34
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L” Norm and Distance

* Norm is the length of a vector [———— e

* We can use it to draw a unit circle from origin

— Different P values yield different shapes ‘| <=1
» Euclidean norm yields a circle f\\s :
N

» Distance between two vectors (v,w)
— dist(v,w)=| |v-w| |

- \/(’Ul —'wl)2+..+('un—'wn)2

Distance to origin would just be sgrt of sum of squares 35
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Size of a Matrix: Frobenius Norm

« Similar to L2 norm u [ ];

]

Frobenius in ML

— Layers of neural network
iInvolve matrix multiplication
— Regularization:

* minimize Frobenius of weight
matrices ||w(i)|| over L layers

-1
2
1

w O N

5
1 ] HA||=\/4+1+25+..+1=\/E
1

L
=]+ 2 1 WO,

(=)

(5)
o )

(=)

AN
X
N/
g
AN,

e
A

(o)

V matrix

N

N

W matrix

=
,

]
8
[
2
]

HEAYE T
S\ o
(D ()

Kou tttttt es

l1x +1) X V1) x=net;

hj=f(netj) f(X)zl/(1+e-X)

nodes

® <5 0O
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Angle between Vectors

* Dot product of two vectors can be written in
terms of their L2 norms and angle 6 between

them

2"y =zl |yl cos 0

 Cosine between two vectors is a measure of

their similarity .
YN dist (A, B)

o A-B LA %B
similarity = cos(#) = TA[IB| = \ .-'_,.- .

> A2, (3 B2 |, ~— cose

AL LB . S .

, x \
/

37
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Special kind of Matrix: Diagonal

* Diagonal Matrix has mostly zeros, with non-
zero entries only in diagonal
— E.qg., identity matrix, where all diagonal entries are 1

1700
010
0 01

— E.g., covariance matrix with independent features

Cov(X,Y) =oxy = E[(X — px)(Y — py)] 0% 0 ... 0
Covorionce =2(Xi_)::v_?(\/i “Yaso) 0 o % 0
| —GA57 : :
Covorionce = 8 -
0 0 ... op
Covarionce = |- 8.07 - _

Nx|pY) = (273)17 E ﬁexp{——(x —p) 2 (x - u)}

If Cov(X,Y)=0 then E(XY)=E(X)E(Y)
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Efficiency of Diagonal Matrix

e diag (v) denotes a square diagonal matrix with
diagonal elements given by entries of vector v

* Multiplying vector x by a diagonal matrix is
efficient

— To compute diag(v)x we only need to scale each x,
by v,

diag(v)r=v0Ox

* Inverting a square diagonal matrix is efficient

— Inverse exists iff every diagonal entry is nonzero, in
which case diag (v)*=diag ([1/v4,..,1/v,]7)
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Special kind of Matrix: Symmetric

* A symmetric matrix equals its transpose: A=A
— E.g., a distance matrix is symmetric with A;=A;

a b c d e f a b C d e f
a
a0 184 | 222 | 177 | 216 | 231
b 184 |0 45 123 128 200 b
C
|:> c 22245 |0 129 | 121 203 |:>
d
o @ d 177 123 | 129 0 46 | 83
e
@ e 216 128 121 46 0 |83
f 231 200203 83 83 |0 f
Raw data Graphical View

|
Im
@

., covariance matrices are symmetric

o 0 0 0 1 .10

o o0 o0 0 .10 1 }
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Special Kinds of Vectors

 Unit Vector
— A vector with unit norm |z L=1

* Orthogonal Vectors

— A vector x and a vector y are
orthogonal to each other if x'y=0

* |f vectors have nonzero norm, vectors at
90 degrees to each other

— Orthonormal Vectors
 Vectors are orthogonal & have unit norm
» Orthogonal Matrix

— A square matrix whose rows are mutually
orthonormal: A'A=AA'=/ Orthogonal matrices are of

— Al=AT interest because their inverse is
very cheap to compute
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Matrix decomposition

» Matrices can be decomposed into factors to
learn universal properties, just like integers:

— Properties not discernible from their representation

1.Decomposition of integer into prime factors

* From 12=2 X2 X 3 we can discern that
— 12 is not divisible by 5 or
— any multiple of 12 is divisible by 3
— But representations of 12 in binary or decimal are different

2.Decomposition of Matrix A as A=Vdiag(\)V2

» where V is formed of eigenvectors and A are eigenvalues,
e.qg,

has eigenvalues A=1 and A=3 and eigenvectors V. v =
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Eigenvector

* An eigenvector of a square matrix
A Is a non-zero vector v such that

multiplication by A only changes )
the scale of v |
Av=\v x

— The scalar A is known as eigenvalue o X
Matrix A acts by stretching the vector =~

X, not changing its direction, so xis an

 [fvis an eigenvector of A, SO IS semecorarn
any rescaled vector sv. Moreover Hikipedia
sv still has the same eigen value.
Thus look for a unit eigenvector

43
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Eigenvalue and Characteristic Polynomial

A, L A, v
 Consider Av=w [ o M { }
 If vand w are scalar multiples, i.e., if Av=iv

 then v is an eigenvector of the linear transformation A
and the scale factor A is the eigenvalue corresponding
to the eigen vector

* This is the eigenvalue equation of matrix A
— Stated equivalently as  (A-Al)v=0
— This has a non-zero solution if |4-AI|=0 as
» The polynomial of degree n can be factored as
A-M| = (A-L)(A-L)...(A,-D)

* The A, A,...A, are roots of the polynomial and are
eigenvalues of 4

& = 8
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Example of Eigenvalue/Eigenvector

« Consider the matrix A—- 5 1
1 2

« Taking determinant of (A-Al), the char poly is

2— ) 1
1 2—A

A=\ |= =3—4N+ X

* |t has roots A=1 and A=3 which are the two
eigenvalues of A

* The eigenvectors are found by solving for v in
Av=\v, which are

(% — U, , =

45




Eigendecomposition

Suppose that matrix A has n linearly
independent eigenvectors {vi1),..,vi"} with
eigenvalues {A,,..,A,}

Concatenate eigenvectors to form matrix Vv

Concatenate eigenvalues to form vector
A=[Aq,.., A, ]

Eigendecomposition of A is given by
A=Vdiag(A) V1!

Srihari
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Decomposition of Symmetric Matrix

* Every real symmetric matrix A can be
decomposed into real-valued eigenvectors and
eigenvalues

A=QAQ"
where Q is an orthogonal matrix composed of

eigenvectors of A: {v%),..,vin}
orthogonal matrix: components are orthogonal or vi1Tyl)=0

A Is a diagonal matrix of eigenvalues {A,,..,A}

* We can think of A as scaling space by A, in
direction vl
—See figure on next slide 47
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Effect of Eigenvectors and Eigenvalues

« Example of 2 X 2 matrix

* Matrix A with two orthonormal eigenvectors
— vil) with eigenvalue A, vi?) with eigenvalue A,

Plot of unit vectors ucR’

(circle)

Before multiplication

3
9l
1
0

| with two variables x; and x;

Plot of vectors Au
(ellipse)

After multiplication

_3 L L L L L
) -3 -2 -1 0 1 2 3
2!

48
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Python Code for
Eigenvalue/Eigenvector

« https://www.youtube.com/watch?v=mxkGMbrobY0&feature=youtu.be&fbclid=lwAR3ajOax\Wmn
V-rYnAabewY1q9j6is6-H8UhnIMCkhBu3Cqfvby vicyU2fg

10
In [33]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 05
from pylab import rcParams
$matplotlib inline
rcParams|[ 'figure.figsize'] = 8,8
00
9 4
4 3 05
In [ ]: x = np.linspace(-1,1,100)
1.0
In [ ]: yl = np.sqgrt(l - np.square(x))
y2 = -1 * yl
15
In [ ]: plt.plot(x,yl, 'b')
plt.plot(x,y2, 'b') 20
plt.xlim([-2, 2]) 20 -15 -l0 05 00 05 10
plt.ylim([-2, 2])
plt.show()
In [ ]: def transformation(x,y): 8
return 9*x + 4*y, 4*x + 3*y| I 4
In [ ]: x newl, y newl = transformation(x,yl) 6
x_new2, y _new2 = transformation(x,y2) 2
In [ ]: plt.plot(x newl,y newl, 'r')
plt.plot(x_new2,y new2, 'r') 4 "

In [ ]: eig_vals, eig vecs = np.linalg.eig(np.array([[9,4]1,[4,3]1]1))
print('Eigenvectors \n%s' %eig_vecs)
print('\nEigenvalues \n%s' %eig_vals)

~

49



Machine Learning Srihari

Eigendecomposition is not unique

* Eigendecomposition is A=QAQ"

— where Q is an orthogonal matrix composed of
eigenvectors of A

* Decomposition is not unique when two
eigenvalues are the same

* By convention order entries of A in descending

order:

— Under this convention, eigendecomposition is
unique if all eigenvalues are unique

50
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What does eigendecomposition tell us?

* Tells us useful facts about the matrix:
1. Matrix is singular if & only if any eigenvalue is zero
2. Useful to optimize quadratic expressions of form

f(x)=x"Ax subject to [[x][,=1

Whenever x is equal to an eigenvector, fis equal to the
corresponding eigenvalue

Maximum value of f is max eigen value, minimum value is
min eigen value

Example of such a quadratic form appears in multivariate
Gaussian

NGx %) = e H(X —w)" e u)}

91
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Positive Definite Matrix

* A matrix whose eigenvalues are all positive is
called positive definite

— Positive or zero is called positive semidefinite

* |f eigen values are all negative it is negative
definite

— Positive definite matrices guarantee that x’ax>0

52
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Singular Value Decomposition (SVD)

* Eigendecomposition has form: A=vdiag(\)Vv!
— If 4 is not square, eigendecomposition is undefined
* SVD is a decomposition of the form A=upv"

« SVD is more general than eigendecomposition
— Used with any matrix rather than symmetric ones

— Every real matrix has a SVD
« Same is not true of eigen decomposition
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SVD Definition

* Write A as a product of 3 matrices: A=UDV'
—IfAismXn,thenUismXm,DismXn, VisnXn

« Each of these matrices have a special structure

e U and V are orthogonal matrices

e D is a diagonal matrix not necessarily square

— Elements of Diagonal of D are called singular values of A
— Columns of U are called left singular vectors
— Columns of V' are called right singular vectors

* SVD interpreted in terms of eigendecomposition
* Left singular vectors of A are eigenvectors of AAT
 Right singular vectors of 4 are eigenvectors of ATA

* Nonzero singular values of A are square roots of eigen
values of ATA. Same is true of AAT
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Use of SVD in ML

1. SVD is used in generalizing matrix inversion
— Moore-Penrose inverse (discussed next)

2. Used in Recommendation systems

— Collaborative filtering (CF)

« Method to predict a rating for a user-item pair based on the
history of ratings given by the user and given to the item

* Most CF algorithms are based on user-item rating matrix
where each row represents a user, each column an item
— Entries of this matrix are ratings given by users to items

« SVD reduces no.of features of a data set by reducing space

dimensions from N to K where K< N e



" SVD in Collaborative Filtering

X S
11 Zi12 ... ZTin S
1 ... Ulp 11 Vi1 ... Vip
I21 22 ... . . .
CE. ' T 1 Ums Spr Ur1 Urn
ml mn mXr rXr rXmn
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Moore-Penrose Pseudoinverse

* Most useful feature of SVD is that it can be
used to generalize matrix inversion to non-
square matrices

 Practical algorithms for computing the
pseudoinverse of A are based on SVD
A*=VD*UT
—where U,D,V are the SVD of A

* Pseudoinverse D* of D is obtained by taking the reciprocal
of its nonzero elements when taking transpose of
resulting matrix
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Trace of a Matrix

* Trace operator gives the sum of the elements
along the diagonal

Tr(A)=) A,

* Frobenius norm of a matrix can be represented
as

A, =(Trta)y
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Determinant of a Matrix

Determinant of a square matrix det(A) is a
mapping to a scalar

It is equal to the product of all eigenvalues of
the matrix

Measures how much multiplication by the
matrix expands or contracts space

Srihari
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Example: PCA

* A simple ML algorithm is Principal Components
Analysis

* |t can be derived using only knowledge of basic
linear algebra
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PCA Problem Statement

» Given a collection of m points {x{1,..,x(m} in R"
represent them in a lower dimension.
— For each point x!) find a code vector ¢! in R

— If I'1s smaller than n it will take less memory to
store the points

— This is lossy compression

— Find encoding function f (x) = c and a decoding
function x =g (f(x))
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PCA using Matrix multiplication

One choice of decoding function is to use

matrix multiplication: g(c) =Dc¢ where DeR™

— D is a matrix with / columns

To keep encoding easy, we require columns of
D to be orthogonal to each other

— To constrain solutions we require columns of D to
have unit norm

We need to find optimal code c* given D
Then we need optimal D
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Finding optimal code given D

* To generate optimal code point c* given input x,
minimize the distance between input point x
and its reconstruction g(c*)

c*=arg min‘ ‘x — g(c)‘ L

— Using squared L2 instead of L2, function being
minimized is equivalent to

(x—g(c)) (x—g(c))
* Using g(c)=Dc optimal code can be shown to be
equivalent to ¢* = argmin— 2x" De+¢ ¢
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Optimal Encoding for PCA

» Using vector calculus V.(-2x'Dete'o)=0
—2D"'x+2¢c=0

c=D"x
* Thus we can encode x using a matrix-vector
operation

— To encode we use f(x)=D"x

— For PCA reconstruction, since g(c)=Dc we use
r(x)=g(f(x))=DD"x

— Next we need to choose the encoding matrix D
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Method for finding optimal D
* Revisit idea of minimizing L? distance between
Inputs and reconstructions
— But cannot consider points in isolation
— S0 minimize error over all points: Frobenius norm

1
D*= argmin[Z(xf.” — r(xm) .)2 )2
D

i J

* subject to D'D=I,
* Use design matrix X, xer™
— Given by stacking all vectors describing the points

* To derive algorithm for finding D* start by
considering the case /=1

— In this case D is just a single vector d N
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Final Solution to PCA

* For /=1, the optimization problem is solved
using eigendecomposition
— Specifically the optimal d is given by the
eigenvector of XX corresponding to the largest
eigenvalue

* More generally, matrix D is given by the /
eigenvectors of X corresponding to the largest
eigenvalues (Proof by induction)
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