Linear Algebra for Machine Learning

Importance of Linear Algebra in ML

But what is RIGHT? And is that enough? (Image: Machine Learning, XKCD)

Topics in Linear Algebra for ML

- Why do we need Linear Algebra?
- From scalars to tensors
- Flow of tensors in ML
- Matrix operations: determinant, inverse
- Eigen values and eigen vectors
- Singular Value Decomposition
- Principal components analysis

What is linear algebra?

 Linear algebra is the branch of mathematics concerning linear equations such as

$$a_1x_1 + \dots + a_nx_n = b$$

- In vector notation we say $a^{T}x=b$
- Called a linear transformation of x
- Linear algebra is fundamental to geometry, for defining objects such as lines, planes, rotations

Linear equation $a_1x_1+....+a_nx_n=b$ defines a plane in $(x_1,...,x_n)$ space Straight lines define common solutions to equations

Why do we need to know it?

- Linear Algebra is used throughout engineering
 - Because it is based on continuous math rather than discrete math
 - Computer scientists have little experience with it
- Essential for understanding ML algorithms
 - E.g., We convert input vectors $(x_1,...,x_n)$ into outputs by a series of linear transformations
- Here we discuss:
 - Concepts of linear algebra needed for ML
 - Omit other aspects of linear algebra

Linear Algebra Topics

Scalars, Vectors, Matrices and Tensors

- Multiplying Matrices and Vectors
- Identity and Inverse Matrices
- Linear Dependence and Span
- Norms
- Special kinds of matrices and vectors
- Eigendecomposition
- Singular value decomposition
- The Moore Penrose pseudoinverse
- The trace operator
- The determinant
- Ex: principal components analysis

Scalar

- Single number
 - In contrast to other objects in linear algebra, which are usually arrays of numbers
- Represented in lower-case italic x
 - They can be real-valued or be integers
 - E.g., let $x \in \mathbb{R}$ be the slope of the line
 - Defining a real-valued scalar
 - E.g., let $n \in \mathbb{N}$ be the number of units
 - Defining a natural number scalar

Vector

- An array of numbers arranged in order
- Each no. identified by an index
- Written in lower-case bold such as x
 - its elements are in italics lower case, subscripted

$$oldsymbol{x} = \left[egin{array}{c} x_1 \\ x_2 \\ x_n \end{array}
ight]$$

- If each element is in R then x is in R^n
- We can think of vectors as points in space
 - Each element gives coordinate along an axis

Matrices

- 2-D array of numbers
 - So each element identified by two indices
- Denoted by bold typeface A
 - Elements indicated by name in italic but not bold
 - $A_{1,1}$ is the top left entry and $A_{m,n}$ is the bottom right entry
 - We can identify nos in vertical column j by writing: for the horizontal coordinate
 - E.g., $A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{bmatrix}$
 - $A_{i:}$ is i^{th} row of $A, A_{:j}$ is j^{th} column of A
- If A has shape of height m and width n with real-values then $A \in \mathbb{R}^{m \times n}$

Tensor

Sometimes need an array with more than two axes

- E.g., an RGB color image has three axes
- A tensor is an array of numbers arranged on a regular grid with variable number of axes
 - See figure next
- Denote a tensor with this bold typeface: A
- Element (i,j,k) of tensor denoted by $A_{i,j,k}$

Dimensions of Tensors

Slices of a 3rd order tensor

Collection of two

two dimensional

One dimensional Tensor

Collection of one dimensional tensors gives two dimensional tensor

ie	1	5	2	7	11	24	25	12
	2	3	35	7	14	0	2	15
al	5	25	3	1	13	28	3	16

Two dimensional tensor

Three dimensional tensor

Numpy library in Python for tensors

Zero-dimensional tensor

import numpy as np
 x = np.array(100)
 print("Array:", x)
 print("Dimension:", x.ndim)

Output

Array: 100 Dimension 0

One-dimensional tensor

- import numpy as np
 x = np.array([1,5,2,7,11,24,25,12])
 print("Array:", x)
 print("Dimension:", x.ndim)
- Output

Array: [1 5 2 7 11 24 25 12] Dimension 1

Two-dimensional tensor

```
import numpy as np x = np.array(
[
[1,5,2,7,11,24,25,12],
[1,2,3,4,5,6,7,8]
]
)
```

- print("Array:", x)print("Dimension:", x.ndim)
- Output

```
Array: [[ 1 5 2 7 11 24 25 12] [ 1 2 3 4 5 6 7 8]]
```

Dimension 2

Transpose of a Matrix

- An important operation on matrices
- The transpose of a matrix A is denoted as A^T
- Defined as

$$(\mathbf{A}^{\mathrm{T}})_{i,j} = A_{j,i}$$

- The mirror image across a diagonal line
 - Called the main diagonal, running down to the right starting from upper left corner

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} & A_{1,3} \\ A_{2,1} & A_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & A_{3,3} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \\ A_{1,3} & A_{2,3} & A_{3,3} \end{bmatrix}$$

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \\ A_{1,3} & A_{2,3} & A_{3,3} \end{bmatrix}$$

$$A = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \\ A_{3,1} & A_{3,2} \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} A_{1,1} & A_{2,1} & A_{3,1} \\ A_{1,2} & A_{2,2} & A_{3,2} \end{bmatrix}$$

Vectors as special case of matrix

- Vectors are matrices with a single column
- Often written in-line using transpose

$$\mathbf{x} = [x_1, ..., x_n]^{\mathrm{T}}$$

$$m{x} = \left[egin{array}{c} x_1 \\ x_2 \\ x_n \end{array}
ight] \implies m{x}^T = \left[x_1, x_2, ... x_n \right]$$

A scalar is a matrix with one element

$$a=a^{\mathrm{T}}$$

Matrix Addition

- We can add matrices to each other if they have the same shape, by adding corresponding elements
 - If A and B have same shape (height m, width n)

$$\left| C = A + B \Longrightarrow C_{i,j} = A_{i,j} + B_{i,j} \right|$$

- A scalar can be added to a matrix or multiplied by a scalar $D = aB + c \Rightarrow D_{i,j} = aB_{i,j} + c$
- Less conventional notation used in ML:
 - Vector added to matrix $C = A + b \Rightarrow C_{i,j} = A_{i,j} + b_j$
 - Called broadcasting since vector b added to each row of A

Multiplying Matrices

- For product C=AB to be defined, A has to have the same no. of columns as the no. of rows of B
 - If A is of shape mxn and B is of shape nxp then matrix product C is of shape mxp

$$C = AB \Longrightarrow C_{i,j} = \sum_{k} A_{i,k} B_{k,j}$$

- Note that the standard product of two matrices is not just the product of two individual elements
 - Such a product does exist and is called the element-wise product or the Hadamard product $A \odot B$

Multiplying Vectors

- Dot product between two vectors x and y of same dimensionality is the matrix product x^Ty
- We can think of matrix product C=AB as computing C_{ij} the dot product of row i of A and column j of B

Matrix Product Properties

- Distributivity over addition: A(B+C)=AB+AC
- Associativity: A(BC)=(AB)C
- Not commutative: AB=BA is not always true
- Dot product between vectors is commutative:
 x^Ty=y^Tx
- Transpose of a matrix product has a simple form: (AB)^T=B^TA^T

Example flow of tensors in ML

Vector x is converted into vector y by multiplying x by a matrix W

A linear classifier $y = Wx^{T} + b$

A linear classifier with bias eliminated $y = Wx^T$

Linear Transformation

- Ax=b
 - where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$

n equations in n unknowns

$$\begin{bmatrix} A = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \vdots & \vdots \\ A_{n,1} & \cdots & A_{nn} \end{bmatrix} & \mathbf{x} = \begin{bmatrix} x_i \\ \vdots \\ x_n \end{bmatrix} & \mathbf{b} = \begin{bmatrix} b_i \\ \vdots \\ b_n \end{bmatrix} \\ \mathbf{n} \times \mathbf{n} & \mathbf{n} \times \mathbf{1} & \mathbf{n} \times \mathbf{1} \end{bmatrix}$$

Can view A as a linear transformation of vector *x* to vector *b*

 Sometimes we wish to solve for the unknowns $x = \{x_1, ..., x_n\}$ when A and b provide constraints

Identity and Inverse Matrices

- Matrix inversion is a powerful tool to analytically solve Ax=b
- Needs concept of Identity matrix
- Identity matrix does not change value of vector when we multiply the vector by identity matrix
 - Denote identity matrix that preserves n-dimensional vectors as I_n
 - Formally $I_n \in \mathbb{R}^{n \times n}$ and $\forall \mathbf{x} \in \mathbb{R}^n, I_n \mathbf{x} = \mathbf{x}$
 - Example of I_3 $\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1
 \end{bmatrix}$

Matrix Inverse

- Inverse of square matrix A defined as $A^{-1}A = I_n$
- We can now solve Ax=b as follows:

$$Ax = b$$

$$A^{-1}Ax = A^{-1}b$$

$$I_n x = A^{-1}b$$

$$x = A^{-1}b$$

- This depends on being able to find A⁻¹
- If A⁻¹ exists there are several methods for finding it

Solving Simultaneous equations

```
Ax = b
where A is (M+1) x (M+1)
x is (M+1) x 1: set of weights to be determined
b is N x 1
```

Equations in Linear Regression

- Instead of Ax=b
- We have Φw=t
 - where Φ is $m \times n$ design matrix of m features for n samples \mathbf{x}_i , j=1,...n
 - w is weight vector of m values
 - t is target values of sample, $t=[t_1,...t_n]$
 - We need weight w to be used with m features to determine output

$$y(\boldsymbol{x},\boldsymbol{w}) = \sum_{i=1}^{m} w_i x_i$$

Closed-form solutions

- Two closed-form solutions
 - 1.Matrix inversion x=A⁻¹b
 - 2. Gaussian elimination

Linear Equations: Closed-Form Solutions

1. Matrix Formulation: Ax=b

Solution: $x=A^{-1}b$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

2. Gaussian Elimination followed by back-substitution

$$x + 3y - 2z = 5$$
$$3x + 5y + 6z = 7$$
$$2x + 4y + 3z = 8$$

Disadvantage of closed-form solutions

- If A⁻¹ exists, the same A⁻¹ can be used for any given b
 - But A⁻¹ cannot be represented with sufficient precision
 - It is not used in practice
- Gaussian elimination also has disadvantages
 - numerical instability (division by small no.)
 - $-O(n^3)$ for $n \times n$ matrix
- Software solutions use value of b in finding x
 - E.g., difference (derivative) between b and output is used iteratively

How many solutions for Ax=b exist?

- System of equations with
 - n variables and m equations is:
- $A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = b_1$ $A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = b_2$ $A_{m1}x_1 + A_{m2}x_2 + \dots + A_{mn}x_n = b_m$

- Solution is $x=A^{-1}b$
- In order for A⁻¹ to exist Ax=b must have exactly one solution for every value of b
 - It is also possible for the system of equations to have no solutions or an infinite no. of solutions for some values of b
 - It is not possible to have more than one but fewer than infinitely many solutions
 - If \mathbf{x} and \mathbf{y} are solutions then $\mathbf{z} = \alpha \mathbf{x} + (1-\alpha) \mathbf{y}$ is a solution for any real α

Span of a set of vectors

- Span of a set of vectors: set of points obtained by a linear combination of those vectors
 - A linear combination of vectors $\{v^{(1)},...,v^{(n)}\}$ with coefficients c_i is $\sum c_i v^{(i)}$
 - System of equations is Ax=b
 - A column of A, i.e., A_{:i} specifies travel in direction i
 - How much we need to travel is given by x_i
 - This is a linear combination of vectors $Ax = \sum_{i} x_i A_{:,i}$
 - Thus determining whether Ax=b has a solution is equivalent to determining whether b is in the span of columns of A
 - This span is referred to as column space or range of A

Conditions for a solution to Ax=b

- Matrix must be square, i.e., m=n and all columns must be linearly independent
 - Necessary condition is $n \ge m$
 - For a solution to exist when $A \in \mathbb{R}^{m \times n}$ we require the column space be all of \mathbb{R}^m
 - Sufficient Condition
 - If columns are linear combinations of other columns, column space is less than \mathbb{R}^m
 - Columns are linearly dependent or matrix is *singular*
 - For column space to encompass \mathbb{R}^m at least one set of m linearly independent columns
- For non-square and singular matrices
 - Methods other than matrix inversion are used

Use of a Vector in Regression

- A design matrix
 - N samples, D features

- Feature vector has three dimensions
- This is a regression problem

Norms

- Used for measuring the size of a vector
- Norms map vectors to non-negative values
- Norm of vector $\mathbf{x} = [x_1,...,x_n]^T$ is distance from origin to \mathbf{x}
 - It is any function f that satisfies:

$$f(\boldsymbol{x}) = 0 \Rightarrow \boldsymbol{x} = 0$$

$$f(\boldsymbol{x} + \boldsymbol{y}) \leq f(\boldsymbol{x}) + f(\boldsymbol{y})$$
 Triangle Inequality
$$\forall \alpha \in R \quad f(\alpha \boldsymbol{x}) = |\alpha| f(\boldsymbol{x})$$

L^P Norm

Definition:

$$\left|\left|\left|\boldsymbol{x}\right|\right|_p = \left(\sum_i \left|x_i\right|^p\right)^{\frac{1}{p}}\right|$$

- L² Norm
 - Called Euclidean norm
 - Simply the Euclidean distance
 between the origin and the point x
 - written simply as ||x||
 - Squared Euclidean norm is same as x^Tx

- L¹ Norm
 - Useful when 0 and non-zero have to be distinguished
 - Note that L^2 increases slowly near origin, e.g., 0.1^2 =0.01)
- L[∞] Norm

$$\mathbf{||x||}_{\infty} = \max_{i} |x_{i}|$$

Called max norm

Use of norm in Regression

Linear Regression

x: a vector, w: weight vector

$$y(x, w) = w_0 + w_1 x_1 + ... + w_d x_d = w^T x$$

$$y(\boldsymbol{x}, \boldsymbol{w}) = w_0 + \sum_{j=1}^{M-1} w_j \boldsymbol{\phi}_j(\boldsymbol{x})$$

Loss Function

$$\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_{n}, \mathbf{w}) - t_{n}\}^{2} + \frac{\lambda}{2} ||\mathbf{w}^{2}||$$

Second term is a weighted norm called a regularizer (to prevent overfitting)

L^P Norm and Distance

Norm is the length of a vector

- We can use it to draw a unit circle from origin
 - Different P values yield different shapes
 - Euclidean norm yields a circle

- Distance between two vectors (v,w)
 - $-\operatorname{dist}(\boldsymbol{v},\boldsymbol{w})=||\boldsymbol{v}-\boldsymbol{w}||$

$$= \sqrt{(v_1 - w_1)^2 + .. + (v_n - w_n)^2}$$

Distance to origin would just be sqrt of sum of squares

Size of a Matrix: Frobenius Norm

Similar to L² norm

$$\left\|\left|A\right|\right|_F = \left(\sum_{i,j} A_{i,j}^2\right)^{\frac{1}{2}}$$

$$\begin{vmatrix} A = \begin{bmatrix} 2 & -1 & 5 \\ 0 & 2 & 1 \\ 3 & 1 & 1 \end{bmatrix} \quad ||A|| = \sqrt{4 + 1 + 25 + .. + 1} = \sqrt{46}$$

- Frobenius in ML
 - Layers of neural network involve matrix multiplication
 - Regularization:
 - minimize Frobenius of weight matrices ||w(i)|| over L layers

$$J_R = J + \lambda \sum_{i=1}^{L} \left\| W^{(i)} \right\|_F$$

$$I_{1\times(l+1)} \times V_{(l+1)\times J} = net_J$$

$$h_j = f(net_j)$$
 $f(x) = 1/(1 + e^{-x})$

Angle between Vectors

• Dot product of two vectors can be written in terms of their L^2 norms and angle θ between them

 $|\boldsymbol{x}^T \boldsymbol{y} \Rightarrow ||\boldsymbol{x}||_2 ||\boldsymbol{y}||_2 \cos \theta$

Cosine between two vectors is a measure of

their similarity

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}},$$

Special kind of Matrix: Diagonal

- Diagonal Matrix has mostly zeros, with nonzero entries only in diagonal
 - E.g., identity matrix. where all diagonal entries are 1
 - E.g., covariance matrix with independent features

$$Cov(X,Y) = \sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$

Covariance =
$$\frac{\sum (x_i - x_{avg})(y_i - y_{avg})}{n-1}$$
Covariance =
$$\frac{-64.57}{8}$$
Covariance =
$$-8.07$$

$$Cov(X,Y) = \sigma_{XY} = E[(X - \mu_X)(Y - \mu_Y)]$$

$$Covariance = \frac{\sum (x_i - x_{avg})(y_i - y_{avg})}{n-1}$$

$$Covariance = \frac{-64.57}{8}$$

$$Covariance = -8.07$$

$$Covariance = -8.07$$

$$Covariance = -8.07$$

If
$$Cov(X,Y)=0$$
 then $E(XY)=E(X)E(Y)$

$$N(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{\mid \boldsymbol{\Sigma} \mid^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$

Efficiency of Diagonal Matrix

- diag (v) denotes a square diagonal matrix with diagonal elements given by entries of vector v
- Multiplying vector x by a diagonal matrix is efficient
 - To compute diag(\mathbf{v}) \mathbf{x} we only need to scale each x_i by v_i $\frac{\operatorname{diag}(\mathbf{v})\mathbf{x} = \mathbf{v} \odot \mathbf{x}}{\mathbf{v}}$
- Inverting a square diagonal matrix is efficient
 - Inverse exists iff every diagonal entry is nonzero, in which case diag $(\mathbf{v})^{-1}$ =diag $([1/v_1,...,1/v_n]^{\mathsf{T}})$

Special kind of Matrix: Symmetric

- A symmetric matrix equals its transpose: A=A^T
 - E.g., a distance matrix is symmetric with $A_{ij}=A_{ji}$

E.g., covariance matrices are symmetric

```
\Sigma = \left(\begin{array}{cccccccc} 1 & .5 & .15 & .15 & 0 & 0 \\ .5 & 1 & .15 & .15 & 0 & 0 \\ .15 & .15 & 1 & .25 & 0 & 0 \\ .15 & .15 & .25 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & .10 \\ 0 & 0 & 0 & 0 & .10 & 1 \end{array}\right),
```

Special Kinds of Vectors

- Unit Vector
 - A vector with unit norm

$$||x||_2$$
=1

- Orthogonal Vectors
 - A vector \mathbf{x} and a vector \mathbf{y} are orthogonal to each other if $\mathbf{x}^{\mathsf{T}}\mathbf{y}=0$

- If vectors have nonzero norm, vectors at 90 degrees to each other
- Orthonormal Vectors
 - Vectors are orthogonal & have unit norm
 - Orthogonal Matrix
 - A square matrix whose rows are mutually orthonormal: $A^{T}A = AA^{T} = I$
 - $-A^{-1}=A^{T}$

Orthogonal matrices are of interest because their inverse is very cheap to compute

Matrix decomposition

- Matrices can be decomposed into factors to learn universal properties, just like integers:
 - Properties not discernible from their representation
 - 1.Decomposition of integer into prime factors
 - From 12=2 × 2 × 3 we can discern that
 - 12 is not divisible by 5 or
 - any multiple of 12 is divisible by 3
 - But representations of 12 in binary or decimal are different
 - 2. Decomposition of Matrix A as $A=V \operatorname{diag}(\lambda)V^{-1}$
 - where V is formed of eigenvectors and λ are eigenvalues,
 e.g,

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

has eigenvalues λ =1 and λ =3 and eigenvectors V:

$$\boxed{v_{\scriptscriptstyle \lambda=1} = \left[\begin{array}{c} 1 \\ -1 \end{array}\right], v_{\scriptscriptstyle \lambda=3} = \left[\begin{array}{c} 1 \\ 1 \end{array}\right]}$$

Eigenvector

An eigenvector of a square matrix
 A is a non-zero vector v such that
 multiplication by A only changes
 the scale of v

$$Av = \lambda v$$

- The scalar λ is known as eigenvalue
- If v is an eigenvector of A, so is any rescaled vector sv. Moreover sv still has the same eigen value. Thus look for a unit eigenvector

Wikipedia

Eigenvalue and Characteristic Polynomial

Consider Av=w

$$A = \left[egin{array}{cccc} A_{_{I,I}} & L & A_{_{I,n}} \ M & M & M \ A_{_{n,I}} & L & A_{_{nn}} \end{array}
ight] \qquad oldsymbol{v} = \left[egin{array}{c} w_{_I} \ M \ v_{_n} \end{array}
ight] \qquad oldsymbol{w} = \left[egin{array}{c} w_{_I} \ M \ w_{_n} \end{array}
ight]$$

- If v and w are scalar multiples, i.e., if Av=λv
 - then v is an eigenvector of the linear transformation A and the scale factor λ is the eigenvalue corresponding to the eigen vector
- This is the eigenvalue equation of matrix A
 - Stated equivalently as (A-λI)v=0
 - This has a non-zero solution if $|A-\lambda I|=0$ as
 - The polynomial of degree n can be factored as

$$|A-\lambda I| = (\lambda_1 - \lambda)(\lambda_2 - \lambda)...(\lambda_n - \lambda)$$

• The λ_1 , $\lambda_2...\lambda_n$ are roots of the polynomial and are eigenvalues of A

Example of Eigenvalue/Eigenvector

Consider the matrix

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 2 \end{array} \right]$$

Taking determinant of (A-λI), the char poly is

$$A - \lambda I \models \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix} = 3 - 4\lambda + \lambda^2$$

- It has roots λ=1 and λ=3 which are the two eigenvalues of A
- The eigenvectors are found by solving for \mathbf{v} in $A\mathbf{v}=\lambda\mathbf{v}$, which are $\begin{bmatrix} v_{\lambda=1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, v_{\lambda=3} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Eigendecomposition

- Suppose that matrix A has n linearly independent eigenvectors $\{v^{(1)},...,v^{(n)}\}$ with eigenvalues $\{\lambda_1,...,\lambda_n\}$
- Concatenate eigenvectors to form matrix V
- Concatenate eigenvalues to form vector $\lambda = [\lambda_1,...,\lambda_n]$
- Eigendecomposition of A is given by

$$A=V \operatorname{diag}(\lambda) V^{-1}$$

Decomposition of Symmetric Matrix

 Every real symmetric matrix A can be decomposed into real-valued eigenvectors and eigenvalues

$$A = Q \Lambda Q^{\mathsf{T}}$$

where Q is an orthogonal matrix composed of eigenvectors of A: $\{v^{(1)},...,v^{(n)}\}$

orthogonal matrix: components are orthogonal or $\mathbf{v}^{(i)\mathsf{T}}\mathbf{v}^{(j)}=0$

 Λ is a diagonal matrix of eigenvalues $\{\lambda_1,...,\lambda_n\}$

- We can think of A as scaling space by λ_i in direction $v^{(i)}$
 - –See figure on next slide

Effect of Eigenvectors and Eigenvalues

- Example of 2 × 2 matrix
- Matrix A with two orthonormal eigenvectors
 - $-v^{(1)}$ with eigenvalue λ_1 , $v^{(2)}$ with eigenvalue λ_2

Plot of unit vectors $\mathbf{u} \in \mathbb{R}^2$ (circle)

with two variables x_1 and x_2

Plot of vectors Au (ellipse)

Python Code for Eigenvalue/Eigenvector

 https://www.youtube.com/watch?v=mxkGMbrobY0&feature=youtu.be&fbclid=lwAR3ajOaxWmn V-rYnAa6cwYfq9j6is6-H8UhnIMCkhBu3Cqfvby_vicyU2fg

```
In [33]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from pylab import rcParams
    %matplotlib inline
    rcParams['figure.figsize'] = 8,8

In []: x = np.linspace(-1,1,100)

In []: y1 = np.sqrt(1 - np.square(x))
    y2 = -1 * y1

In []: plt.plot(x,y1, 'b')
    plt.plot(x,y2, 'b')
    plt.xlim([-2, 2])
    plt.ylim([-2, 2])
    plt.ylim([-2, 2])
    plt.show()
```



```
In []: def transformation(x,y):
    return 9*x + 4*y, 4*x + 3*y|
In []: x_new1, y_new1 = transformation(x,y1)
    x_new2, y_new2 = transformation(x,y2)

In []: plt.plot(x_new1,y_new1, 'r')
    plt.plot(x_new2,y_new2, 'r')

In []: eig_vals, eig_vecs = np.linalg.eig(np.array([[9,4],[4,3]]))
    print('Eigenvectors \n%s' %eig_vecs)
    print('\nEigenvalues \n%s' %eig_vals)
```


Eigendecomposition is not unique

- Eigendecomposition is $A=Q\Lambda Q^{T}$
 - where Q is an orthogonal matrix composed of eigenvectors of A
- Decomposition is not unique when two eigenvalues are the same
- By convention order entries of Λ in descending order:
 - Under this convention, eigendecomposition is unique if all eigenvalues are unique

What does eigendecomposition tell us?

- Tells us useful facts about the matrix:
 - 1. Matrix is singular if & only if any eigenvalue is zero
 - 2. Useful to optimize quadratic expressions of form

$$f(x)=x^TAx$$
 subject to $\frac{1}{x}/\frac{1}{2}=1$

Whenever **x** is equal to an eigenvector, **f** is equal to the corresponding eigenvalue

Maximum value of f is max eigen value, minimum value is min eigen value

Example of such a quadratic form appears in multivariate

Gaussian

$$N(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$

Positive Definite Matrix

- A matrix whose eigenvalues are all positive is called positive definite
 - Positive or zero is called positive semidefinite
- If eigen values are all negative it is negative definite
 - Positive definite matrices guarantee that $x^TAx \ge 0$

Singular Value Decomposition (SVD)

- Eigendecomposition has form: A=Vdiag(λ)V-1
 - If A is not square, eigendecomposition is undefined
- SVD is a decomposition of the form A=UDV^T
- SVD is more general than eigendecomposition
 - Used with any matrix rather than symmetric ones
 - Every real matrix has a SVD
 - Same is not true of eigen decomposition

SVD Definition

- Write A as a product of 3 matrices: A=UDV^T
 - If A is $m \times n$, then U is $m \times m$, D is $m \times n$, V is $n \times n$
- Each of these matrices have a special structure
 - U and V are orthogonal matrices
 - D is a diagonal matrix not necessarily square
 - Elements of Diagonal of D are called singular values of A
 - Columns of *U* are called *left singular vectors*
 - Columns of V are called right singular vectors
- SVD interpreted in terms of eigendecomposition
 - Left singular vectors of A are eigenvectors of AA^T
 - Right singular vectors of A are eigenvectors of A^TA
 - Nonzero singular values of A are square roots of eigen values of A^TA. Same is true of AA^T

Use of SVD in ML

- 1. SVD is used in generalizing matrix inversion
- Moore-Penrose inverse (discussed next)
- 2. Used in Recommendation systems
- Collaborative filtering (CF)
 - Method to predict a rating for a user-item pair based on the history of ratings given by the user and given to the item
 - Most CF algorithms are based on user-item rating matrix where each row represents a user, each column an item
 - Entries of this matrix are ratings given by users to items
 - SVD reduces no.of features of a data set by reducing space dimensions from N to K where K < N

SVD in Collaborative Filtering

- X is the utility matrix
 - $-X_{ij}$ denotes how user *i* likes item *j*
 - CF fills blank (cell) in utility matrix that has no entry
- Scalability and sparsity is handled using SVD
 - SVD decreases dimension of utility matrix by extracting its latent factors
 - Map each user and item into latent space of dimension r

Moore-Penrose Pseudoinverse

- Most useful feature of SVD is that it can be used to generalize matrix inversion to nonsquare matrices
- Practical algorithms for computing the pseudoinverse of A are based on SVD

$$A^{+}=VD^{+}U^{T}$$

- where U,D,V are the SVD of A
 - Pseudoinverse D⁺ of D is obtained by taking the reciprocal of its nonzero elements when taking transpose of resulting matrix

Trace of a Matrix

 Trace operator gives the sum of the elements along the diagonal

$$Tr(A) = \sum_{i,i} A_{i,i}$$

Frobenius norm of a matrix can be represented as

$$\left\| \left| A \right| \right|_F = \left(Tr(A) \right)^{\frac{1}{2}}$$

Determinant of a Matrix

- Determinant of a square matrix det(A) is a mapping to a scalar
- It is equal to the product of all eigenvalues of the matrix
- Measures how much multiplication by the matrix expands or contracts space

Example: PCA

- A simple ML algorithm is Principal Components
 Analysis
- It can be derived using only knowledge of basic linear algebra

PCA Problem Statement

- Given a collection of m points {x⁽¹⁾,...,x^(m)} in Rⁿ represent them in a lower dimension.
 - For each point $\mathbf{x}^{(i)}$ find a code vector $\mathbf{c}^{(i)}$ in R^{I}
 - If I is smaller than n it will take less memory to store the points
 - This is lossy compression
 - Find encoding function f(x) = c and a decoding function $x \approx g(f(x))$

PCA using Matrix multiplication

- One choice of decoding function is to use matrix multiplication: $g(\mathbf{c}) = D\mathbf{c}$ where $D \in \mathbb{R}^{n \times l}$
 - D is a matrix with l columns
- To keep encoding easy, we require columns of D to be orthogonal to each other
 - To constrain solutions we require columns of D to have unit norm
- We need to find optimal code c* given D
- Then we need optimal D

Finding optimal code given D

 To generate optimal code point c* given input x, minimize the distance between input point x and its reconstruction g(c*)

$$c^* = \underset{c}{\operatorname{arg\,min}} ||x - g(c)||_2$$

 Using squared L² instead of L², function being minimized is equivalent to

$$(x-g(c))^T(x-g(c))$$

• Using g(c)=Dc optimal code can be shown to be equivalent to $c^*= \operatorname{arg\,min} - 2x^T Dc + c^T c$

63

Optimal Encoding for PCA

Using vector calculus

$$\nabla_{c}(-2\mathbf{x}^{T}D\mathbf{c} + \mathbf{c}^{T}\mathbf{c}) = \mathbf{0}$$

$$-2D^{T}\mathbf{x} + 2\mathbf{c} = \mathbf{0}$$

$$\mathbf{c} = D^{T}\mathbf{x}$$

- Thus we can encode x using a matrix-vector operation
 - To encode we use $f(x)=D^Tx$
 - For PCA reconstruction, since g(c)=Dc we use $r(x)=g(f(x))=DD^Tx$
 - Next we need to choose the encoding matrix D

Method for finding optimal D

- Revisit idea of minimizing L² distance between inputs and reconstructions
 - But cannot consider points in isolation
 - So minimize error over all points: Frobenius norm

$$D^* = \underset{D}{\operatorname{argmin}} \left(\sum_{i,j} \left(\boldsymbol{x}_j^{(i)} - r \left(\boldsymbol{x}^{(i)} \right)_j \right)^2 \right)^{\frac{1}{2}}$$

- subject to $D^TD=I_I$
- Use design matrix X, $X \in \mathbb{R}^{m \times n}$
 - Given by stacking all vectors describing the points
- To derive algorithm for finding D* start by considering the case I = 1
 - In this case D is just a single vector d

Final Solution to PCA

- For I = 1, the optimization problem is solved using eigendecomposition
 - Specifically the optimal d is given by the eigenvector of X^TX corresponding to the largest eigenvalue
- More generally, matrix D is given by the I
 eigenvectors of X corresponding to the largest
 eigenvalues (Proof by induction)